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Abstract—Predicting the State-of-Health (SoH) of lithium-ion
batteries is a fundamental task of battery management systems
on electric vehicles. It aims at estimating future SoH based
on historical aging data. Most existing deep learning methods
rely on filter-based feature extractors (e.g., CNN or Kalman
filters) and recurrent time sequence models. Though efficient,
they generally ignore cyclic features and the domain gap between
training and testing batteries. To address this problem, we present
CyFormer, a transformer-based cyclic time sequence model for
SoH prediction. Instead of the conventional CNN-RNN structure,
we adopt an encoder-decoder architecture. In the encoder, row-
wise and column-wise attention blocks effectively capture intra-
cycle and inter-cycle connections and extract cyclic features. In
the decoder, the SoH queries cross-attend to these features to
form the final predictions. We further utilize a transfer learning
strategy to narrow the domain gap between the training and
testing set. To be specific, we use fine-tuning to shift the model
to a target working condition. Finally, we made our model more
efficient by pruning. The experiment shows that our method
attains an MAE of 0.75% with only 10% data for fine-tuning on
a testing battery, surpassing prior methods by a large margin.
Effective and robust, our method provides a potential solution
for all cyclic time sequence prediction tasks.

Index Terms—SoH, time sequence, transformer, cyclic atten-
tion, transfer learning

I. INTRODUCTION

Researches on battery management systems (BMS) have
received increasing attention for the rapid commercialization
of electric vehicles (EVs) [1]. One of the core tasks of BMS
is to predict State-of-Health (SoH) of Li-ion batteries. SoH is
defined as the ratio of the current releasable battery charge
to its rated capacity. It gradually decreases after charging and
discharging for a number of cycles, indicating a shrinkage in
capacity and maximum power. However, this vital indicator
cannot be measured directly due to the complex dynamic
behavior and time-varying conditions of Li-ion batteries [2].
The task of predicting SoH is to estimate SoH of future
charging-discharging cycles given aging data (current, voltage,
temperature, etc.) within every historical cycle (see Fig. 1).

Accuracy guarantees safety, and safety protects life. BMS
needs accurate SoH predictions to optimize energy consump-
tion, prevent over-charging and over-discharging, and extend
battery life. In contrast, inaccurate estimations of SoH may
lead EVs to spontaneous combustion or anchoring.

*Equal contribution.
†Corresponding authors.
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Fig. 1: Illustration of the SoH prediction task and the row-wise
and column-wise attention mechanism. The model takes in a
series of historical physical quantities, and outputs SoH values
of future cycles. In the experiment, the physical quantities
we use are measured current (Cm), measured voltage (Vm),
load current (Cl), load voltage (Vl) and temperature (T). Row-
wise attention captures intra-cycle connections, while col-wise
attention captures inter-cycle connections.

Challenges in accurate SoH prediction can be concluded as
the following three points: First, SoH is a highly-complicated
non-linear function of current, voltage, temperature and other
parameters of historical cycles. Theoretically, deep neural net-
work is a perfect choice to fit this function and learn the aging
trend from historical data. But practically, it is hard for existing
time sequence model to both learn long-term patterns among
different cycles and extract battery features within each cycle.
Second, different from many application scenarios of artificial
intelligence, the aging data of Li-ion batteries is scarce. This
usually causes under-fitting on light weight models and over-
fitting on larger models. Third, the charging and discharging
behavior of one battery may significantly differ from another,
even if they are of the same type. A domain gap exists
between batteries working in different conditions. Previous
works on SoH estimation generally utilize models based on
RNN or LSTM [3], [4]. Though more efficient, these models
suffer severely from forgetting long-term patterns [5]. More
importantly, they quickly forget patterns learnt from training
set when being fine-tuned on a test battery, and thus perform
poorly when data for fine-tuning is scarce. Recently, several
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transformer-based methods have been proposed [6]–[8]. In
order to convert initial data into a transformer style input,
most of them use a CNN-based feature extractor to extract
intra-cycle features. However, the input data within each cycle
does not have a hierarchical waveform structure. Therefore, it
is hard for convolution filters to capture intra-cycle features
effectively. Additionally, this pipeline compresses all sample
points within a cycle into one single dimension, which might
induce feature loss.

In this work, we present CyFormer, a novel generalized
cyclic time sequence model, to address the aforementioned
problems. This CNN-free model follows the typical encoder-
decoder pipeline of transformer. The encoder first extracts
cyclic features from historical data and transmits them into the
decoder. Then the SoH queries cross-attend to these features in
the decoder and forms the final predictions. At the core of our
model lies the cyclic attention (i.e., row-wise and column-wise
attention) blocks. Row-wise attention block aims at extracting
intra-cycle connections, whereas column-wise attention block
aims at extracting inter-cycle connections (Fig. 1). Compared
with CNN, these two blocks enable the encoder to capture
connections between sample points in different cycles, and
preserve intra-cycle features at the same time.

Extensive experiments demonstrate both the effectiveness
and the robustness of CyFormer on SoH prediction. Compared
with previous works, we adopt a more challenging criterion for
testing to fully demonstrate the transfer learning performance
of our model. More specifically, we fine-tune the model with
only 10% of the SoH data at the beginning, predict SoH of the
remaining 90% hidden cycles, and calculate prediction error
with the ground truth of these hidden cycles. With this testing
method, our model achieved an MAE of 0.75% and an MAPE
of 0.90%, surpassing baseline methods by a large margin.
Industries may acquire the first few cycles of SoH data in
quality control process of every new battery. Our result means
that industries can use this SoH data to train a model which
could give highly accurate predictions of SoH on BMS.

Our contributions can be concluded as follows:
• We proposed CyFormer, a generalized cyclic time se-

quence model with row-wise and column-wise attention
mechanism. With CyFormer, we gained highly accurate
SoH predictions and achieved new SOTA in SoH estima-
tion.

• We adopt a transfer learning style testing criterion, which
is closer to the real application scenario. Experiments
showed that our model maintains accuracy by this cri-
terion.

• We designed a light weight version of CyFormer for BMS
by pruning unnecessary modules. It becomes significantly
more efficient than the initial version with only a tiny loss
on accuracy.

II. RELATED WORK

a) SoH Prediction: Modern SoH prediction methods can
be generally divided into three categories: direct measurement
methods, adaptive algorithms and data-driven methods [6].

Direct measurement methods [9], [10] analyze the aging
behavior through numerous laboratory tests. These off-line
methods require specialized sensors in laboratories. Adaptive
algorithms use traditional mathematical models and numerical
filters. Lim et al. [11] proposed Fading Kalman filter (FKF),
which avoids large estimation errors in conventional Kalman
filter. This method induces large computational costs [5], and
is not efficient enough to be deployed on BMS.

Data-driven methods can be further divided into machine
learning methods and deep learning methods. Machine learn-
ing methods typically utilize support vector machine (SVM)
[12]–[14] or Gaussian process regression (GPR) [15]–[17].
Most existing SOTAs adopt deep learning methods, such as
CNN-LSTM [3], ViT [7] or DynaFormer [8]. Fan et al. [4]
proposed a hybrid neural network, which extracts local infor-
mation with CNN and captures time dependencies with GRU.
To better capture global representation, Gu et al. [6] proposed a
CNN-Transformer framework that replaces recurrent modules
with transformer encoder and decoder. To reduce oscillations,
Shen et al. [5] introduced Immersion and Invariance (I&I)
adaptive observer into the transformer-based pipeline.

b) Time Series Analysis: In time series forecasting, one
of the most prominent models is ARIMA [18]. Flunkert et al.
[19] first integrated auto-regression with RNN and proposed
DeepAR, a probabilistic forecasting network. Bai et al. [20]
discovered that a simple convolutional architecture outper-
forms canonical recurrent networks (e.g., RNN, LSTM) on
a wide spectrum of tasks and datasets. Li et al. [21] proposed
LogSparse Transformer with only O(L(logL)2) memory cost.
They also utilized convolutional self-attention so that local
context can be better incorporated into attention mechanism.

c) Transfer Learning: In many deep learning tasks, a
domain gap exists between training and testing datasets.
Therefore, many generalized transfer learning methods have
been proposed. Kumar et al. [22] suggested LP-FT, a two-step
strategy that first trains linear probing module and then fine-
tunes the entire model. Similar strategies have been adopted in
SoH predictions. To boost performance on batteries in different
working conditions, Fu et al. [7] conducted fine-tuning with
SoH data of the first few cycles to shift the model to the testing
battery.

III. TASK STATEMENT

As illustrated in Fig. 1, consider that we have a battery
working at the end of the t-th charge-discharge cycle. Given
size of the prediction window nout, the task of our model is to
predict SoH value of cycle t+1 to t+nout, based on the aging
data of cycle 1 to t. To be specific, assume that lsample is the
sample point number within each cycle, and c is the number of
physical quantities measured at each sample point (i.e., input
channel size). The input of this task can be organized as the



following t× lsample matrix,

input =


X11, X12, · · · , X1lsample

X21, X22, · · · , X2lsample

...
...

...
Xt1, Xt2, · · · , Xtlsample

 (1)

where each Xij is a vector of size C. It is composed of
physical quantities like current, voltage and temperature. The
output of this task is a sequence of predicted SoH values,

output = {SoHi|i = t+ 1, · · · , t+ nout} (2)

where SoHi is a number within [0, 1].
There are two special cases worth considering. The first one

is named just-in-time (JIT) prediction, where we set nout as 1
and only predict SoH of the current cycle. The second one is
named Remaining Useful Life (RUL) prediction, where we set
nout to a pre-defined maximum and predict the cycle number
when SoH decreases to a certain threshold. This threshold
represents the scrapping point of batteries, and the number
of remaining cycles indicates the remaining life of the battery.
In this work, we focus on JIT research.

IV. METHOD

An overview of our model is depicted in Fig.2. As described
in Section III, our model directly processes two-dimensional
cyclic data, rather than the one-dimensional input sequence
of the classical transformer architecture. The encoder first
encodes the two-dimensional input into a one-dimensional
feature sequence, and then feed it into the decoder. In the
decoder, the randomly-initialized SoH queries cross-attend to
these features to form prediction values of nout future cycles.
In the following sections, we will discuss the detailed structure
of the encoder and the decoder respectively.

A. Encoder

The encoder is composed of four main parts, namely the
input embedding module, the 2D positional encoding module,
a stack of encoder layers and the output head.

Both the input embedding and the output head are linear
layers. The input embedding module extends the channel size
of each input token to dencoder. It applies the following affine
transformation on each vector in the input matrix 1:

X
′

ij =W>Xij + b (3)

where WT is a C × dencoder weight matrix and b is a
bias vector of size dencoder. As the output of the embedding
module, X

′

ij is then fed into the first encoder layer.
The output head fully connects all sample points in each

input cycle to form nin feature vectors with the channel size
of ddecoder. It can be described as Formula 4.

Fi =

lsample∑
m=1

O>mXim + b (4)

where Fi is the i-th vector in the cyclic feature sequence. Each
WT

m is a dencoder × ddecoder weight matrix, and b is a bias
vector of size ddecoder.

The 2D positional encoding of each input token is defined
as:

PE2D(cycle,sample) = PE1Dx + PE1Dy (5)

Where PE1Dx and PE1Dy are both 1D sinusoidal posi-
tional encodings calculated by [23]:

PE1D(pos,2i) = sin(pos/100002i/dmodel) (6)

PE1D(pos,2i+1) = cos(pos/100002i/dmodel) (7)

Each encoder layer consists of a row-wise attention block,
a column-wise attention block and a 3-layer MLP. Each of
these blocks is followed by a residual block and a layer
normalization block. Both row-wise and column-wise attention
blocks derive from self-attention blocks (Alg. 1). They are
designed to capture intra-cycle and inter-cycle connections
respectively.

a) Row-wise Attention: The upper part of Fig.3 illustrates
the structure of a row-wise attention block. Row-wise atten-
tion aims at capturing connections between data sampled at
different times within a single cycle. To this end, we first split
the two-dimensional input into single rows. Each row contains
all sample points within a particular cycle. Then each row is
regarded as an individual input sequence and goes through a
self-attention block with shared weights. To be specific, each
row generates its own queries, keys and values. Following the
typical multi-head attention mechanism, we first calculate dot-
product affinities between queries and keys to form attention
weights. Then we multiply the values with their corresponding
weights, and feed the result into an output linear layer. After
going through self-attention blocks, the outputs of all rows are
concatenated to form a final output with the same shape as the
original input.

b) Column-wise Attention: The lower part of Fig.3 illus-
trates the structure of a column-wise attention block. Column-
wise attention aims at capturing connections between data
sampled at the same time but in different cycles. Similar to
row-wise attention, we achieved this goal by slicing the input
data into individual columns, feeding them into self-attention
blocks with shared weights, and concatenating them into an
output matrix.

It should be noticed that the inputs and outputs of row-wise
and column-wise blocks all have the same shape, which ren-
ders these blocks compatible with the sequential transformer
architecture. Additionally, our method preserves intra-cycle
features since the second dimension is never squeezed until
the end of the encoder.

B. Decoder

The decoder is composed of three main parts, namely
the positional encoding module, a stack of decoder layers,
and a linear output head. A sequence of randomly-initialized
SoH queries goes through these parts to form the final SoH
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Fig. 2: An overview of our model. Components of the encoder are colored green, whereas componets of the decodered are
colored orange. Each cube in the input or square in the output represents a number, while each square in rounded rectangles
represents a vector of size ddecoder.

Algorithm 1 Row-wise and Column-wise Attention

Input: Matrix [X
′

ij ] with channel size c
Output: Matrix [Oij ] with channel size c

for each row Ri in [X
′

ij ] do
// Input projections
Qi,Ki, Vi ← linear(Ri)
// Self-attention
Ai ← softmax

(
1√

dencoder
Q>i Ki

)
Ri ← layerNorm(Ri + ViA

>
i )

end for
for each column Cj in [X

′

ij ] do
// Input projections
Qj ,Kj , Vj ← linear(Cj)
// Self-attention
Aj ← softmax

(
1√

dencoder
Q>j Kj

)
Cj ← layerNorm(Cj + VjA

>
j )

end for
[Oij ]← [X

′

ij ]

predictions. The query sequence consists of nout vectors with
a channel size of ddecoder:

query =
[
Q1, Q2, · · · , Qnout

]
(8)

The output head is a linear layer. It fully connects all channels
of each query vector and outputs nout SoH values:

SoHt+i =W>Qi + b (9)

In the decoder, we use the 1D sinusoidal positional encoding
defined in Formula 6 and 7.

Following the typical transformer decoder architecture, each
decoder layer consists of a self-attention block, a cross-
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Fig. 3: An illustration of cyclic attention mechanism. The
upper part and the lower part show the structure of row-wise
and column-wise attention blocks, respectively. Each square
in rounded rectangles represents a vector of size dencoder.

attention block and a 3-layer MLP. Similar to the encoder,
each of these blocks is followed by a residual block and a
layer normalization block. The cross-attention block informs
queries of the historical features {Fi}, while the self-attention
block keeps the historical trend among all the predictions.

V. EXPERIMENT

In this section, we first introduce the dataset and the data
pre-processing procedure (Sec. V-A). Then, We introduce
evaluation metrics (Sec. V-B) and implementation details (Sec.
V-C). We conducted a comparative experiment with CNN-
LSTM and CNN-Transformer (Sec. V-D) to demonstrate the
accuracy of CyFormer. To better validate each component of



our model, we provide detailed ablation studies (Sec. V-E).
Finally, we present a light weight version of CyFormer, strik-
ing a balance between accuracy and computational costs(Sec.
V-F).

A. Dataset

We carry out the experiment with the Battery Data Set pro-
vided by NASA Ames Prognostics Center of Excellence [24],
[25]. We removed batteries that are extremely inconsistent with
the common aging patterns of batteries. Fig. 4 shows the aging
curve of the nineteen batteries we used. These battery cells
worked in different ambient temperatures(4℃, 24℃, 43℃).In
each cycle, they were first charged through a constant current
- constant voltage (CC-CV) procedure with the upper voltage
at 4.2V until the current decayed to 20 mA. Then they were
discharged with constant or pulse current waveforms until each
of the cells reached its cut-off voltage. We use load voltage
(Vl), load current (Cl), measured voltage (Vm), measured
current (Cm) and temperature (T) curves of the discharge
process (see Fig. 1). The SoH of a batteryis defined as the
ratio of the maximum charge to its rated capacity:

SOH =
Qmax

Cr
× 100% (10)

where Qmax is the maximum charge available from the current
battery and Cr is the rated capacity. To align sample points
in different cycles, we linearly interpolated and re-sampled
intra-cycle data.
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Fig. 4: The SoH decay curves of the 19 batteries in the Battery
Data Set. The same linestyle indicates the same group of
batteries. Batteries are marked with different colors in the same
group.

Among all nineteen batteries, one is selected as the target
battery for testing, and others are used as the source dataset
for training. To this end, aging data of the target battery is
further divided into the fine-tuning segment(10%) and the
hidden segment(90%). We adopt a two-stage transfer learning

strategy to narrow the domain gap between the source and the
target batteries. We first train the model on the source dataset
to fit general working conditions, and then fine-tune the model
on the fine-tuning segment of the target battery to shift to a
new working condition. Finally, evaluation of the model is
conducted on the hidden segment of the target battery.

B. Evaluation Metrics

To evaluate the performance of CyFormer, three different
evaluation metrics are employed: mean absolute percentage
error (MAPE), mean absolute error (MAE) and root mean
square error (RMSE). MAPE represents the relative percentage
error between the prediction and the actual value. MAE is the
average of the absolute difference between the estimation and
the actual value of SOH. It aims at measuring the average
magnitude of errors of the proposed method. RMSE indicates
the deviation of the estimation value and the actual value, and
thus represents the quality of estimation. MAE, MAPE, RMSE
are defined as:

MAE =
1

n

n∑
i=1

|ŷi − yi| (11)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (12)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (13)

where y1, y2, · · · , yn are the actual values, ŷ1, ŷ2, · · · , ŷn are
the predicted values, and n is the number of testing samples.

C. Implementation Details

We choose MAE as the loss function. The network is trained
with Adam optimizer with a learning rate of 0.0001. We set
β1 as 0.9 and β2 as 0.999. Grid search is used to obtain the
optimal model parameters. The selected parameters are shown
in Table I.

TABLE I: Hyperparameter settings

Hyperparameters value

lsample 32
dencoder 16
ddecoder 16
nin 16
Gamma 0.1
Batch size 32
Epochs 1500
Encoder layers 4
Decoder layers 4
Attention heads h 8
Learning rate(training) 0.0001
Learning rate(fine-tuning) 0.0002

The input window size nin is defined as the number of
cycles contained in the input sequence. The SoH predic-
tion performances with different input window size nin are
shown in II. When nin increases, the accuracy increases



simultaneously, whereas the computational cost rises as well.
Additionally, ground-truth data for fine-tuning would be scarce
if nin were too large. Therefore, we set nin = 16 as it strikes
a balance between accuracy and efficiency.

TABLE II: The SoH result of different nin

nin FLOPs Params MAE MAPE RMSE

8 0.09 0.32 2.68% 2.95% 3.13%
12 0.13 0.33 1.56% 1.66% 1.90%
16 0.17 0.35 0.75% 0.89% 0.95%
32 0.34 0.41 0.73% 0.90% 0.95%

We adopt a transfer learning style testing criterion. The fine-
tuning segment of the target battery only contains a small
amount (10%) of data at the beginning of the ageing phase.
The feature extraction modules are mainly trained on the
source dataset. In the fine-tuning process, parameters in the
decoder are mainly modified, and the model quickly shifts to
the target domain with the 10% fine-tuning segment.

D. Comparison with Other Methods

As mentioned in section V-A, Cell #B0007 is randomly
selected as the target battery. Other batteries are selected as the
source dataset. The first 10%, 30%, or 70% of #B0007 were
adopted for offline fine-tuning, while the remaining part (90%,
70%, or 30%) were used for online evaluation. As typical
baselines, CNN-LSTM and CNN-Transformer were employed
to estimate battery SoH with the same testing criteria.

As shown in Tab. III, the MAEs, MAPEs and RMSEs
of the CyFormer are within 1%, while for CNN-LSTM and
CNN-Transformer, the highest errors are about 4% and 3%,
respectively. CyFormer achieves the lowest loss among all
three methods under all three circumstances, demonstrating
its effectiveness and robustness. It should be noticed that
CyFormer can achieve accurate prediction using only 10% or
less fine-tuning data, while CNN-Transformer need at least
70% to reach a comparable result. This can also prove the
transfer learning efficiency of CyFormer.

TABLE III: Comparison of estimation errors among CyFormer
and other methods

Battery Method MAE MAPE RMSE

B0007(10%) CNN-LSTM 2.69% 2.98% 3.30%
CNN-Transformer 2.01% 2.41% 2.33%
CyFormer 0.75% 0.89% 0.95%

B0007(30%) CNN-LSTM 1.74% 2.19% 2.17%
CNN-Transformer 1.12% 1.56% 1.67%
CyFormer 0.66% 0.87% 0.96%

B0007(70%) CNN-LSTM 1.70% 2.11% 1.89%
CNN-Transformer 0.66% 0.86% 0.82%
CyFormer 0.38% 0.52% 0.49%

Fig. 5 (a)-(c) show the SoH prediction results on the target
battery (#B0007). The SoH prediction accuracy of CyFormer
surpasses other methods by a large margin, especially when
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Fig. 5: The result of SoH estimation based on 10% (a), 30%
(b), 70% (c) transfer learning dataset.

the fine-tuning proportion is 10% (Fig. 5(a)). When the fine-
tuning proportion expands to 30%, CNN-LSTM and CNN-
Transformer models closely follow the battery ageing trend
only in the first twenty cycles. Significant improvement on
accuracy of CNN-Transformer has not appeared until the fine-
tuning proportion reaches 70%. In contrast, the CNN-LSTM
model still jitters significantly even if the the fine-tuning
proportion reaches 70%.



E. Ablation Study

In order to validate the effect of row-wise and column-wise
attention blocks, we conducted abalation studies on following
conditions.
• w/o Row-wise: CyFormer without row-wise structure
• w/o Col-wise: CyFormer without column-wise structure
• w/o Row-wise + Col-wise: CyFormer without row-wise

and column-wise structure
According to Fig. 6, cutting off row-wise and column-wise

attention blocks decreases accuracy, verifying the effectiveness
of the two structures. As shown in Tab. IV, the column-wise
and row-wise atttention blocks reduce MAE by 3.06%, MAPE
by 3.82%, and RMSE by 3.54%.
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Fig. 6: Ablation Study

TABLE IV: Ablation study of column-wise and row-wise
attention blocks

Col-wise. Row-wise. MAE MAPE RMSE

3.81% 4.72% 4.53%√
1.87% 2.18% 3.42%√
2.93% 3.58% 4.02%√ √
0.75% 0.89% 0.95%

F. Pruning

In this section, we designed a light weight version of
CyFormer by pruning. To be specific, we reduced the number
of encoders (i.e., depth), and the number of sampling points.
We only change one component each time to observe how that
affects performance and efficiency.

a) Depth: The depth of the model is defined as the
number of CyFormer encoders. It is highly related to the
effectiveness of feature extraction. The initial depth is set as
4. To make it more efficient, we carried out four groups of
experiments that set depth to 1-4, respectively. The RMSEs,
MAEs, MAPEs and FLOPs of SoH prediction are shown in
Fig. 7.

It can be seen from Fig. 7 that the feature extraction ability
becomes stronger as the model depth increases. Each of the
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Fig. 7: The results of pruning study on model depth.

first three layers improves performance significantly, while
additional layers brings minor improvement. In consideration
of prediction accuracy and inference speed, we set the depth
of the network as 3 in the light weight model.

b) Sampling Rate: Fig. 8 shows the loss and FLOPs
when using different numbers of sampling points. We linearly
interpolated and re-sampled from each cycle to form lsample

sample points. Initially, we set lsample to 32. As lsample

increases, the prediction accuracy augments, but FLOPs rises
as well. Thus, we choose the elbow point 24 as lsample,
striking a balance between performance and computational
costs.
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Fig. 8: The results of pruning study on model depth.

The pruning results of each module are shown in Tab. V.
The joint effect of pruning both depth and sampling rate leads
FLOPs and quantity of parameters to reduce by 41% and 26%,
respectively. At the same time, the accuracy of the model is
hardly affected.

TABLE V: Pruning Experiment

Methods FLOPs Params MAE MAPE RMSE

Initial 0.17 0.35 0.75% 0.89% 0.95%
Depth 0.13 0.28 0.77% 0.93% 1.10%
Sampling point 0.13 0.33 0.92% 1.19% 1.22%
Overall 0.10 0.26 0.95% 1.17% 1.26%



VI. CONCLUSION

In this work, we present CyFormer, a generalized cyclic
time sequence model with row-wise and column-wise atten-
tion mechanism. Via cyclic attention, our model effectively
captures inter-cycle and intra-cycle connections. To narrow the
domain gap among different working conditions, we adopt a
two-stage transfer learning strategy. We also designed a light
weight version of CyFormer for embedding systems by prun-
ing. Experiments show that our model produces accurate SoH
predictions using only 10% data for fine-tuning, demonstrating
the effectiveness and robustness of our model. CyFormer
provides a potential solution for all cyclic time sequence
prediction tasts, and we expect to see more applications of
our method.
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